[feat] plugins: new rerank results plugin

This commit is contained in:
GenericMale 2025-01-19 01:18:13 +01:00
parent 738906358b
commit 9f9ae5427d

77
searx/plugins/rerank.py Normal file
View File

@ -0,0 +1,77 @@
# SPDX-License-Identifier: AGPL-3.0-or-later
"""Plugin which reranks the search results using the Okapi BM25 algorithm.
Before enabling the Rerank plugin, you must the install the pip package ``bm25s``.
Enable in ``settings.yml``:
.. code:: yaml
enabled_plugins:
..
- 'Rerank plugin'
By default, the engine list is retained, so results found by multiple engines receive a score boost.
The following setting can be used to ensure that the engine list only contains the first engine.
This will prevent overlapping search engine results from affecting the ranking:
.. code:: yaml
rerank:
remove_extra_engines: true
"""
from searx import settings
try:
import bm25s
except ImportError:
# Import error is ignored because the admin has to install bm25s manually to use the engine
pass
name = 'Rerank plugin'
description = 'Rerank search results, ignoring original engine ranking'
default_on = False
preference_section = 'general'
# Supported stopwords for bm25s. Default is 'en'
stopword_langs = ['en', 'de', 'nl', 'fr', 'es', 'pt', 'it', 'ru', 'sv', 'no', 'zh']
remove_extra_engines = settings.get('rerank', {}).get('remove_extra_engines')
def post_search(_request, search):
# pylint: disable=protected-access
results = search.result_container._merged_results
query = search.search_query.query
locale = search.search_query.locale
# Determine the stopwords based on the selected locale
stopwords = locale.language if locale and locale.language in stopword_langs else True
retriever = bm25s.BM25()
result_tokens = bm25s.tokenize(
[f"{result.get('title', '')} | {result.get('content', '')} | {result.get('url', '')}" for result in results],
stopwords=stopwords,
)
retriever.index(result_tokens)
query_tokens = bm25s.tokenize(query, stopwords=stopwords)
# Retrieve ranked indices of results based on the query tokens
indices = retriever.retrieve(query_tokens, k=len(results), return_as='documents', show_progress=False)
if remove_extra_engines:
# Only keep the main engine and set our ranking
for position, index in enumerate(indices[0]):
if 'positions' in results[index]:
results[index]['positions'] = [position + 1]
results[index]['engines'] = set([results[index]['engine']])
else:
# Overwrite all engine positions with the new ranking
# Results returned from multiple engines will still get a score boost
for position, index in enumerate(indices[0]):
if 'positions' in results[index]:
results[index]['positions'] = [position + 1] * len(results[index]['positions'])
return True